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Abstract 

This paper examines some of the constraints on cognition 

assumed and imposed by the ACT-R and Soar cognitive 

architectures.  In particular, we study how these constraints 

either encourage or require particular types of “modeling 

idioms” in the form of programming patterns that commonly 

appear in implemented models.  Because of the nature of the 

mapping of the architectures to human cognition, each 

modeling idiom translates relatively directly into changes in 

model behavior data, such as decision timing, memory access, 

and error rates.  Our analysis notes that both architectures 

have sometimes adopted extreme and opposed constraints, 

where the human architecture most likely relies on some 

mixed or more moderate set of constraints.  

Implications of Architectural Constraints on 

Cognitive Modeling 

Experienced cognitive modelers are well aware that “the 

devil is in the details,” particularly when it comes to fine-

grained models of deliberative behavior. Changes in the 

particular reasoning path chosen to model a task can 

manifest themselves as differences in task timing, type and 

rates of errors, and overall strategy differences.  Cognitive 

architectures such as Soar (Laird, Rosenbloom, & Newell, 

1987) and ACT-R (Anderson & Lebiere, 1998) implement 

constraining assumptions that encourage and sometimes 

require particular types of modeling idioms or patterns that 

in turn impact the data the model produces. 

This paper compares some of the modeling idioms 

(perhaps alternatively described as programming patterns) 

that commonly appear in Soar and ACT-R models of 

decision making.  We have come across many of these 

comparisons while developing HLSR, a language for 

building models that can compile both to ACT-R and to 

Soar (Jones et al., 2006).  It is interesting that, although 

ACT-R and Soar are in some ways “close cousins”, there 

are significant differences in how some types of low-level 

reasoning tasks must be modeled, although these differences 

are not necessarily obvious without getting into model 

details.  In many cases, each architecture has adopted 

constraints that are diametrically opposed to each other, 

where an alternative architecture might encourage a more 

moderate or mixed approach. 

Constraints in cognitive architectures often manifest 

themselves as computational bottlenecks that are inspired by 

assumed limitations on human processing.  In ACT-R 6.0 

(Anderson et al, 2004), there is a “cognitive bottleneck” that 

allows only one production rule instantiation to fire at a time 

(even if multiple rule instantiations currently match), and 

there are information bottlenecks that allow only one chunk 

per architectural module to be accessible for production 

matching through that module’s buffer.  In particular, that 

means that only one goal can be active at any time and that 

only one chunk can be retrieved from long-term declarative 

memory at a time.  These limitations imply that complex 

logical decisions must be implemented via sequences of 

retrievals and actions, which in turn impacts the timing of 

retrieval/decision sequences. 

In Soar 8.6, multiple rule instantiations can fire at once, 

and access to declarative memory is essentially unlimited.  

However, Soar imposes a cognitive bottleneck by allowing 

only one “operator object” to be selected at a time.  

Additionally, all operator selections must occur through 

Soar’s preference/decision mechanism.  Finally, in order to 

maintain logical self-consistency, operator objects can 

become automatically unselected if their logical 

preconditions become unmatched.  This latter effect implies 

that individual Soar operators can usually not implement 

long sequences of actions.  Such sequences must instead be 

implemented by series of operators, which can have an 

impact on the timing and granularity of decision sequences. 

These combinations of imposed constraints and 

bottlenecks dictate some of the types of modeling idioms 

that programmers typically use when implementing 

decision-making processes in each architecture.  The 

remainder of this paper provides examples contrasting four 

of these types of idioms. 

Sequences of Decisions and Actions 

ACT-R production rules are allowed to execute multiple 
actions at a time, but in a limited fashion.  They can make 
changes to the contents of each architectural buffer (for this 
paper’s purposes, we will concern ourselves only with the 
goal and retrieval buffers).  Consider the following example 
rule from a Towers-of-Hanoi model, which makes a change 
to the chunk in the goal buffer while simultaneously 
initiating a new retrieval to the retrieval buffer. 
 
(p find-next-tower 

   =goal> 

      isa move-tower 

      disk =disk 

      peg =peg 

      state nil 

==> 

 !output! "Retrieving disk smaller than ~S" =disk    

   +retrieval> 

      isa next-smallest-disk 

      disk =disk 

   =goal> 

      state next) 



Individual Soar rules can also implement multiple actions 
simultaneously.  However, Soar rules are allowed to test 
complex logical patterns with more flexibility than in ACT-
R, and multiple Soar rule instantiations can fire at the same 
time.  As a result, a common Soar modeling idiom is to 
tease apart individual types of actions into separate rules.  
This allows the development of more adaptive code that 
does not introduce “artificial” conjunctions of conditions 
just because the modeler wants multiple things to happen at 
once. For the above example, the Soar idiom would 
typically divide into two separate rules, as shown below. 
These rules access a “current-retrieval” object that mimics 
ACT-R’s retrieval buffer (there is no architectural 
requirement for such a buffer in Soar models). The first rule 
initiates the retrieval, while the second makes the change to 
the goal state.  Notice that the first rule can fire even if some 
other set of conditions want to change the goal state.  The 
second rule can fire whenever the appropriate information is 
in the retrieval buffer, regardless of which process might 
have initiated that retrieval. 
sp {find-next-tower*apply*retrieve 

   (state <s> ^operator <o> ^current-goal <g> 

              ^next-smallest-disk <nsd>) 

   (<o> ^name find-next-tower  

        ^goal <g> ^disk <disk>) 

   (<nsd> ^disk <disk>) 

  -(<s> ^current-retrieval <nsd>) 

   (<disk> ^name <dname>) 

--> 

   (write (crlf) |Retrieving disk smaller than | 

                 <dname>) 

   (<s> ^change-value <cv>) 

   (<cv> ^id <s> ^att current-retrieval  

         ^value <nsd>)} 

 

sp {find-next-tower*apply*change-state 

   (state <s> ^operator <o> ^current-goal <g> 

              ^next-smallest-disk <nsd>) 

   (<o> ^name find-next-tower 

        ^goal <g> ^disk <disk>) 

   (<nsd> ^disk <disk>) 

   (<s> ^current-retrieval <nsd>) 

  -(<g> ^state next) 

--> 

   (write (crlf) |Moving to state "next"|) 

   (<s> ^change-value <cv>) 

   (<cv> ^id <g> ^att state ^value next)} 

In any rule-based system, combinations of conditional 
actions must either be implemented by a combinatorial 
number of rules covering the space of possible condition 
combinations or by a set of rules that reason through the 
combination of conditions.  One important difference is that 
Soar models can sometimes execute such rule combinations 
in parallel where ACT-R must execute them in sequence.  
Either choice has an impact on the timing of decision 
making, as well as the types of errors and adaptivity that the 
model might produce.  
The standard Soar idiom for implementing multiple 

actions can also encounter problems that impact timing, 
errors, and adaptivity.  The typical approach in Soar would 
have a single operator object that has associated with it 
multiple rules that implement the conditional logic for 
various combinations of actions.  However, different 
sequences of action may require rule-firing sequences of 
different lengths, some of which can cause the operator 

object to be deselected automatically (this is in fact the case 
in the above example, where there are additional rules that 
match against the “change-value” pattern).  This can 
introduce “race conditions” where one stream of decision 
making does not get a chance to complete because another 
stream has deselected the operator.  Consider the following, 
slightly more complicated, ACT-R rule, which implements 
three separate actions simultaneously. 
 

(p clear-disk 

   =goal> 

      isa move-disk 

      disk =disk 

      peg =peg 

      state peg 

   =retrieval> 

      isa disk-on-peg 

      disk =disk 

      peg =on 

    - peg =peg 

==> 

   !output! "Subgoaling clear-disk with disk ~S on 

peg ~S to peg ~S parent ~S" =disk =on =peg =goal   

   +goal> 

      isa clear-disk 

      disk =disk 

      current =on 

      peg =peg 

      parent =goal 

   +retrieval> 

      isa next-smallest-disk 

      disk =disk 

   =goal> 

            state =retrieval) 
Attempting to implement this with a single Soar operator 

would almost certainly lead to race conditions that would 
cause the model to break.  The standard Soar idiom to 
respond to such a situation is to break these simultaneous 
conditional actions into individual operators, so they cannot 
race with each other.  But because Soar only allows one 
operator at a time, this imposes sequential processing, where 
the initial desire was to implement a set of parallel actions.  
Again, a combination of constraints within the architecture 
directly leads to meaningful changes in the data that models 
will produce. 

Sequential vs. Parallel Memory Retrieval 

In ACT-R, the combined bottlenecks for individual rule 
firing and memory access through a retrieval buffer produce 
a common idiom for accessing and processing elements 
from long-term declarative memory.  Before any memory 
object can be accessed, it must first be fetched into the 
retrieval buffer.  Thus, the idiom is to include one rule (or 
more) to initiate the retrieval, and one rule (or more) to 
“harvest” the retrieved item, processing it in the desired 
way.  Below are two example rules, again from a Towers-
of-Hanoi model.  These rules process a “clear-disk” goal by 
creating a subgoal to move the “next smaller tower” off of 
the current disk.  In order to accomplish this, the ACT-R 
model must first find a peg to move the subgoal tower to.  
This is accomplished by searching for a spare peg and 
fetching it into the retrieval buffer, where it then becomes 
available to provide information for the new subgoal. 
(p find-spare-peg 



   =goal> 

      isa clear-disk  

      disk =disk 

      current =on  

      peg =peg  

      state nil 

   =retrieval> 

      isa next-smallest-disk disk =disk next =next 

==> 

   !output! "Next smaller disk to ~S is ~S and 

retrieving peg other than ~s and ~S" =disk =next 

=on =peg    

   =goal> 

      disk =next  

      state other 

   +retrieval> 

      isa spare-peg  

      current =on  

      destination =peg) 

 

(p clear-tower 

   =goal> 

      isa clear-disk  

      disk =disk  

      current =on 

      peg =peg  

      state other  

      parent =parent    

   =retrieval> 

      isa spare-peg  

      current =on 

      destination =peg  

      other =other 

==> 

   !output! "Subgoaling move-tower with disk ~S 

peg ~S parent ~S" =disk =peg =parent   

   +goal> 

      isa move-tower  

      disk =disk 

      peg =other  

      parent =parent) 

As in our first example above, a Soar model could be 

built similarly by mimicking the retrieval buffer within 

Soar’s working memory.  However, the more typical idiom 

in Soar would take advantage of Soar’s unfettered access to 

all elements in declarative memory.  In such a Soar model, a 

single rule can perform a complex conditional query and use 

the information to create the desired subgoal, without 

requiring the extra step of going through a retrieval buffer. 

 
sp {clear-disk*propose*create-subgoal*move-tower 

  (state <s> ^current-goal <g> ^disk <disk> 

             ^next-smallest-disk <nsd>  

             ^spare-peg <sp>) 

  (<g> ^name clear-disk ^disk <disk> 

       ^current <on> ^peg <peg> ^parent <parent>) 

  (<nsd> ^disk <disk> ^next <next>) 

  (<sp> ^current <on> ^destination <peg> 

        ^other <other>) 

  (<next> ^name <dname>) 

  (<peg> ^name <pname>) 

  (<other> ^name <oname>) 

--> 

   (write (crlf) |Create new subgoal move-tower 

disk | <dname> | to peg | <oname> | to replace 

clear-disk from peg | <pname>) 

  (<s> ^operator <o>) 

  (<o> ^name create-subgoal ^goal <ng>) 

  (<ng> ^name move-tower ^disk <next> ^peg <other> 

        ^parent <parent> ^clear-parent *yes*)}   

In general, the lack of a retrieval buffer in Soar allows 

Soar models to be written in a more compact way with more 

opportunities for the reuse of individual operators and rules.  

The primary potential downside is that many Soar models 

do not take the memory-retrieval bottleneck seriously, as 

ACT-R models must.  It is possible to find Soar models that 

have literally hundreds of accessible items in their 

declarative memory at one time, although this is generally 

truer for “applied” Soar systems than it is for serious 

cognitive models built in Soar.  There are a number of Soar-

based cognitive models that self-impose more declarative-

memory constraints than the architecture itself requires 

(e.g., Wray & Chong, 2005; Young & Lewis, 1999).  It is 

also worth noting that Soar models with large declarative 

memories are usually compensating for the fact that they do 

not use Soar’s built-in learning mechanism.  Models that use 

learning usually use the learned rules for declarative access, 

rather than relying on huge declarative memories.  The 

situation is similar in ACT-R, except that ACT-R’s 

constraints are more forceful in the sense that it is more 

difficult to “cheat” in the ways that you sometimes can 

when using Soar. 

There are some senses in which loosely limited 

declarative memory access may be plausible, but other 

senses in which it certainly is not.  On the other hand, the 

restriction in ACT-R to have a single retrieval buffer that 

can hold only a single chunk is probably overly restrictive in 

some cases.  In the example above, it would seem 

reasonable that a model of even a slightly experienced 

Towers-of-Hanoi practitioner should just “know” what the 

third peg is.  However, under the current architectural 

constraints, that is only possible by encoding in the 

production rules all the combinatorial possibilities of origin 

and destination pegs (admittedly a limited number with only 

three pegs, but still too large to be considered elegant or 

even plausible).  It would seem plausible to have a small 

number of frequently and/or recently used chunks directly 

accessible from some sort of working memory, but that is 

currently only possible by having the modeler pack a given 

buffer with the content of those chunks, a practice that often 

leads to brittle and/or implausible models.  Both 

assumptions lead to interesting models that are qualitatively 

different, but perhaps plausible and implausible in their own 

ways. 

The main reason for the differing idioms in this case is 

that Soar implements its “retrieval process” through rules 

and rule conditions that can encode arbitrarily complex 

conjunctions of declarative memory elements.  Retrieval in 

ACT-R is instead a sequential process that takes a set of 

cues as input and returns a single set of elements to fill the 

retrieval buffer.  Both of these approaches to memory access 

manifest themselves in modeling idioms that predict 

different types of behavior.  In this case, it is interesting to 

note that each architecture adopts a rather extreme approach 

to memory access, where a more accurate model of the 

human architecture would probably be somewhere in 

between the two.  It seems unlikely that human memory is 



limited to holding accessible a single chunk at a time (e.g. 

Miller, 1956), but equally unlikely that human memory is 

capable of unfettered retrieval of arbitrarily complex 

conjunctions. 

Partial Matching vs. Preferences for Conflict 

Resolution 

One of the more unique aspects of the Soar architecture 

involves its mechanisms for supporting symbolic rule-based 

preferences for conflict resolution.  In Soar, all conflict 

resolution centers around deciding which operator object to 

select next, and this is generally accomplished by preference 

rules that propose binary comparisons between the various 

candidates (O1 is better than O2, O2 is just as good as O3, 

etc.).  The rule-based preference mechanism is necessary 

because there is no architectural conflict resolution 

mechanism (other than the architectural component that 

makes a selection based on the symbolic preferences).   

In ACT-R, conflict resolution centers around two types of 

choices: which rule instantiation should fire next and which 

chunk should be retrieved from declarative memory into the 

retrieval buffer.  ACT-R includes architectural mechanisms 

to support both of these modes of conflict resolution.  Both 

mechanisms are similar, being grounded in subsymbolic 

concepts (utility and activation, respectively) and including 

similar restrictions such as learning constraints.  Thus, the 

idiom in ACT-R modeling is to create numerically oriented 

“preferences” that are assumed to reflect some sort of 

learning from prior experience.  The Soar idiom is to encode 

the preferences as (sometimes complex) sets of logical 

ordering constraints (which are also assumed to be learned).  

The result is that we see some significant differences 

between ACT-R and Soar in conflict-resolution modeling, 

depending on the type of model.  For purely symbolic 

models, ACT-R must include rule conditions that encode 

the combinations of constraints that could be represented as 

individual preference rules in a Soar model.  However, 

ACT-R also provides a subsymbolic partial-matching idiom 

that is not directly available to Soar modelers.  Similarly, 

the most recent versions of Soar have introduced the ability 

to specify numeric and probabilistic preferences, so there 

are some new opportunities to explore non-symbolic 

preference idioms in Soar, as well. 

Following is a simple example of the relatively compact 

representation of preferences that can be encoded into a 

Soar model. In this example, the model is to select either an 

“eat” operator or a “drink” operator, but it prefers to eat 

before drinking. 

 
sp {eat*propose 

   (state <s> ^agent <a>) 

   (<a> ^hungry yes) 

--> 

   (<s> ^operator <o> + =) 

   (<o> ^name eat ^agent <a>)} 

 
sp {drink*propose 

   (state <s> ^agent <a>) 

   (<a> ^thirsty yes) 

--> 

   (<s> ^operator <o> + =) 

   (<o> ^name drink ^agent <a>)} 

 

sp {prefer*eat*over*drink 

   (state <s> ^operator <o1> + <o2> +) 

   (<o1> ^name eat) 

   (<o2> ^name drink) 

--> 

   (<s> ^operator <o1> > <o2>)} 

Note that, if Soar did not include its preference-based 

conflict-resolution mechanism, a modeler would be forced 

to encode the semantics of the various preferences into the 

operator proposal rules themselves.  For example, in the 

above code, we would have to change the drink proposal 

rule to the following: 

 
sp {drink*propose 

   (state <s> ^agent <a>) 

   (<a> ^thirsty yes -^hungry yes) 

--> 

   (<s> ^operator <o> + =) 

   (<o> ^name drink ^agent <a>)} 

A potential problem with this approach to conflict 

resolution is that it will lead to a combinatorial explosion of 

conditions for complex preferences between multiple 

potential choices.  In a purely symbolic ACT-R model, the 

approach would be similar, but with an added constraint.  

Because only one item can be in the retrieval buffer at a 

time, an ACT-R model must test the different logical 

conditions sequentially and either make each test depend on 

the results of the previous one(s) or accumulate the results 

in the goal (or some other) buffer for some final decision.  

In contrast, Soar proposals can each check their 

combinations of conditions with less restricted access to 

declarative memory.  Thus the symbolic ACT-R approach 

might look as follows: 

 
(p check-hungry 

   =goal> 

     isa agent  

     name =name  

     state nil 

==> 

   +retrieval> 

     isa property  

     agent =name  

     attribute hungry  

     value yes 

   =goal> 

      state hungry) 

 

(p check-thirsty 

   =goal> 

      isa agent  

      name =name 

      state hungry 

   =retrieval> 

      isa error 

==> 

   +retrieval> 

      isa property  

      agent =name 

      attribute thirsty  

      value yes 

   =goal> 

      state thirsty) 



In the above example, the first rule’s retrieval will 

succeed if and only if there is a “hungry” property with a 

value of “yes” in declarative memory.  If that retrieval fails, 

the check-thirsty rule will look for a “thirsty” property with 

a value of “yes”.  However, ACT-R modelers are not 

restricted to doing symbolic conflict resolution.  For choices 

like this, ACT-R also supports similarity-based partial 

matching for retrieval.  It is possible to define a “similarity 

relationship” between different attribute values, which will 

in turn influence how the retrieval process executes.  Using 

ACT-R’s partial-matching mechanism, we can rëimplement 

the above example as follows: 
(setsimilarities (hungry thirsty -0.5)) 

 
(p choose-action 

   =goal> 

      isa agent  

      name =name  

      state nil 

==> 

   +retrieval> 

      isa property  

      agent =name 

      attribute hungry  

      value yes 

   =goal> 

      state unknown) 

In this case, the attribute values “hungry” and “thirsty” 

are set to be relatively dissimilar to each other.  But the fact 

that they are defined with any similarity measure at all 

indicates that they are candidates to be substituted for each 

other in any partial-matching retrieval.  Thus, the choose-

action rule initiates a search for “hungry yes”, and it will 

retrieve a perfectly matching chunk if one exists in 

declarative memory.  But if there is no perfectly matching 

chunk, the retrieval process will instead look for the closest 

partial match.  In this case, a chunk representing “thirsty 

yes” would be the next best match.  Based on whichever 

chunk happens to get retrieved, the program can then choose 

to “eat” or “drink”, as appropriate.  However, if the set of 

options is so complex or heterogeneous that checking the 

options cannot be reduced to a single retrieval, then an outer 

loop must be explicitly maintained to access the various 

options sequentially, where in Soar they could be combined 

into a single complex conditional rule.  The problem in 

ACT-R is that if each option involves checking some 

additional condition (such as perceptual or memory 

information), then the utility preferences are not helpful 

because they would attempt to check the same condition 

over and over again.  Either an explicit round robin check of 

the various conditions has to be set up symbolically in the 

production conditions or learning of the utilities can be used 

to iterate through the options by having the failure of each 

option temporarily depress the utility of the production 

selecting that option (Lebiere et al., in press).  

Exhaustive Processing and Search 

The final pattern we investigate involves performing 

exhaustive iterative actions on a set of similar object or 

chunk types.  For example, imagine that declarative memory 

contains a number of message objects, each with a text 

attribute.  We would like to build a model that iterates 

through all of the messages and prints out the text value of 

each one.  In a Soar program this can be done relatively 

simply because an individual operator application rule can 

match against multiple objects at a time, and each matching 

instantiation will execute simultaneously.  For example, the 

following Soar rule simultaneously finds all “unhandled” 

message objects in declarative memory, prints their 

messages, and marks the message objects as “handled”. 

 
sp {handle-messages*apply 

  (state <s> ^operator <o> ^message <m>) 

  (<o> ^name handle-messages) 

  (<m> ^text <t> ^message-handled false) 

--> 

  (write (crlf) | Message is: | <t>) 

  (<m> ^message-handled false - true +)} 

In contrast, ACT-R is restricted to matching one object at 

a time through the retrieval buffer.  In older versions of 

ACT-R, this would be accomplished by iterating over a 

sequence of retrievals and harvests, tagging each chunk as it 

is processed.  This approach also requires an additional rule 

that detects when the retrieval process has failed to find any 

further matching candidates for processing.   

 
(p find-message-to-handle 

   =goal> 

      isa handle-message 

      state nil 

==> 

   =goal> 

      state harvest 

   +retrieval> 

      isa message 

      handled false) 

  

(p handle-message 

   =goal> 

      isa handle-message 

      state harvest 

   =retrieval> 

      isa message 

      text =text 

      handled false 

==> 

   !output! "~S" =text 

   =goal> 

      state nil 

   =retrieval> 

      handled true) 

 

(p finish-handle-message 

   =goal> 

      isa handle-message 

      state harvest 

   =retrieval> 

      isa ERROR 

      condition Failure 

==> 

   !output! "Done handling messages" 

   =goal> 

      state finished) 

However, the most recent version of ACT-R does not 

allow non-monotonic changes (such as tagging) to chunks in 

the retrieval buffer, so new idioms are developing that rely 

on the subsymbolic processing of the retrieval mechanism.  



These new idioms encounter additional confounding factors.  

A major problem is that the dynamics of the activation 

calculus, and in particular the learning of the base level to 

reflect frequency and recency of access, conspire against 

that iterative process.  Recently accessed chunks become 

more active while chunks that have not been accessed decay 

and become less active, leading to the opposite dynamics of 

the iteration desired, namely a winner-take-all tendency to 

retrieve the same candidate(s) again and again.  One typical 

idiom to get around this problem is to alter subsymbolic 

processing parameters such as noise, in order to “break out” 

of bad retrieval sequences.  However, this is often only 

partially successful in moving the iteration along.   

Another example of iteration comes again from the 

Towers of Hanoi.  In this problem, it is useful to compute 

which disk is currently at the top of a particular peg.  In a 

Soar model, the encoded logic is along the lines of “find a 

disk on the peg for which all other disks on the peg have a 

lower position”.  Although this gets a bit messy, the logic 

can be encoded in the conditions of a single Soar rule.  In 

contrast, an ACT-R model must implement this logic using 

a sequential loop or by clever configuration of the partial-

matching mechanism.  Although the sequential iteration can 

be implemented in a relatively straightforward fashion, it 

again  runs into the stumbling block that ACT-R prefers to 

retrieve the same disk repeatedly, instead of iterating 

through all of the disks on the peg. 

Note that it is also possible to implement sequential 

iteration using operators in Soar.  Soar does not include the 

restriction against altering declarative memory items, so the 

typical Soar idiom in such situations is to tag each object as 

it is processed in sequence.  However, depending on the 

situation, the alternative idiom in Soar is to use a single rule 

to process everything at once.  It is certainly a valid 

question, however, whether Soar ought to make it so easy to 

do this type of computation.  It could be argued persuasively 

that humans in general cannot perform this type of 

exhaustive, instantaneous, massively parallel processing, 

and so it is a mistake for Soar to allow and even encourage 

this type of solution.  On the other hand, there are certainly 

some types of massively parallel processing occurring in the 

human architecture.  So once again, we are faced with two 

architectures that embody extreme constraints, where the 

truth is probably a combination or compromise. 

It should also be noted that there are particular problems 

of this type that also require a sequential solution approach 

in Soar.  For example, although a Soar program can easily 

use one rule to operate on a whole set of objects 

simultaneously, it currently has no way to count the number 

of objects in that set.  For the task of counting the number of 

elements in a set, both ACT-R and Soar demand 

sequentially implemented solutions. 

Conclusion 

We have examined four classes of modeling idioms that 

arise relatively directly from the combination of assumed 

constraints on cognitive processing imposed by the ACT-R 

and Soar cognitive architectures.  We hope that these 

examples provide a more detailed feeling to the modeling 

community about what some of the differences and 

similarities are between the architectures, particularly when 

it gets to the nitty-gritty of building detailed models.  From 

a cognitive modeling perspective, this is not just an exercise 

in examining computationally equivalent modeling 

approaches.  Each of the idioms implies measurable 

differences in the type of data the models will produce.  We 

have also observed that the constraints and bottlenecks 

assumed by each architecture tend be rather extreme and 

often opposed to each other.  We join others in 

recommending future work that includes finding more 

intermediate constraints on the cognitive architecture, which 

should translate to some variation in the common modeling 

idioms, and in turn to cognitive models that produce better 

matches to human data. 
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