
Comparing Modeling Idioms in ACT-R and Soar

Randolph M. Jones (rjones@soartech.com)
Soar Technology, 44 Burleigh Street

Waterville, ME 04901 USA

Christian Lebiere (cl@cmu.edu)
Psychology Department, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213 USA

Jacob A. Crossman (jcrossman@soartech.com)
Soar Technology, 3600 Green Court Suite 600

Ann Arbor, MI 48105 USA

Abstract

This paper examines some of the constraints on cognition

assumed and imposed by the ACT-R and Soar cognitive

architectures. In particular, we study how these constraints

either encourage or require particular types of “modeling

idioms” in the form of programming patterns that commonly

appear in implemented models. Because of the nature of the

mapping of the architectures to human cognition, each

modeling idiom translates relatively directly into changes in

model behavior data, such as decision timing, memory access,

and error rates. Our analysis notes that both architectures

have sometimes adopted extreme and opposed constraints,

where the human architecture most likely relies on some

mixed or more moderate set of constraints.

Implications of Architectural Constraints on

Cognitive Modeling

Experienced cognitive modelers are well aware that “the

devil is in the details,” particularly when it comes to fine-

grained models of deliberative behavior. Changes in the

particular reasoning path chosen to model a task can

manifest themselves as differences in task timing, type and

rates of errors, and overall strategy differences. Cognitive

architectures such as Soar (Laird, Rosenbloom, & Newell,

1987) and ACT-R (Anderson & Lebiere, 1998) implement

constraining assumptions that encourage and sometimes

require particular types of modeling idioms or patterns that

in turn impact the data the model produces.

This paper compares some of the modeling idioms

(perhaps alternatively described as programming patterns)

that commonly appear in Soar and ACT-R models of

decision making. We have come across many of these

comparisons while developing HLSR, a language for

building models that can compile both to ACT-R and to

Soar (Jones et al., 2006). It is interesting that, although

ACT-R and Soar are in some ways “close cousins”, there

are significant differences in how some types of low-level

reasoning tasks must be modeled, although these differences

are not necessarily obvious without getting into model

details. In many cases, each architecture has adopted

constraints that are diametrically opposed to each other,

where an alternative architecture might encourage a more

moderate or mixed approach.

Constraints in cognitive architectures often manifest

themselves as computational bottlenecks that are inspired by

assumed limitations on human processing. In ACT-R 6.0

(Anderson et al, 2004), there is a “cognitive bottleneck” that

allows only one production rule instantiation to fire at a time

(even if multiple rule instantiations currently match), and

there are information bottlenecks that allow only one chunk

per architectural module to be accessible for production

matching through that module’s buffer. In particular, that

means that only one goal can be active at any time and that

only one chunk can be retrieved from long-term declarative

memory at a time. These limitations imply that complex

logical decisions must be implemented via sequences of

retrievals and actions, which in turn impacts the timing of

retrieval/decision sequences.

In Soar 8.6, multiple rule instantiations can fire at once,

and access to declarative memory is essentially unlimited.

However, Soar imposes a cognitive bottleneck by allowing

only one “operator object” to be selected at a time.

Additionally, all operator selections must occur through

Soar’s preference/decision mechanism. Finally, in order to

maintain logical self-consistency, operator objects can

become automatically unselected if their logical

preconditions become unmatched. This latter effect implies

that individual Soar operators can usually not implement

long sequences of actions. Such sequences must instead be

implemented by series of operators, which can have an

impact on the timing and granularity of decision sequences.

These combinations of imposed constraints and

bottlenecks dictate some of the types of modeling idioms

that programmers typically use when implementing

decision-making processes in each architecture. The

remainder of this paper provides examples contrasting four

of these types of idioms.

Sequences of Decisions and Actions

ACT-R production rules are allowed to execute multiple
actions at a time, but in a limited fashion. They can make
changes to the contents of each architectural buffer (for this
paper’s purposes, we will concern ourselves only with the
goal and retrieval buffers). Consider the following example
rule from a Towers-of-Hanoi model, which makes a change
to the chunk in the goal buffer while simultaneously
initiating a new retrieval to the retrieval buffer.

(p find-next-tower

 =goal>

 isa move-tower

 disk =disk

 peg =peg

 state nil

==>

 !output! "Retrieving disk smaller than ~S" =disk

 +retrieval>

 isa next-smallest-disk

 disk =disk

 =goal>

 state next)

Individual Soar rules can also implement multiple actions
simultaneously. However, Soar rules are allowed to test
complex logical patterns with more flexibility than in ACT-
R, and multiple Soar rule instantiations can fire at the same
time. As a result, a common Soar modeling idiom is to
tease apart individual types of actions into separate rules.
This allows the development of more adaptive code that
does not introduce “artificial” conjunctions of conditions
just because the modeler wants multiple things to happen at
once. For the above example, the Soar idiom would
typically divide into two separate rules, as shown below.
These rules access a “current-retrieval” object that mimics
ACT-R’s retrieval buffer (there is no architectural
requirement for such a buffer in Soar models). The first rule
initiates the retrieval, while the second makes the change to
the goal state. Notice that the first rule can fire even if some
other set of conditions want to change the goal state. The
second rule can fire whenever the appropriate information is
in the retrieval buffer, regardless of which process might
have initiated that retrieval.
sp {find-next-tower*apply*retrieve

 (state <s> ^operator <o> ^current-goal <g>

 ^next-smallest-disk <nsd>)

 (<o> ^name find-next-tower

 ^goal <g> ^disk <disk>)

 (<nsd> ^disk <disk>)

 -(<s> ^current-retrieval <nsd>)

 (<disk> ^name <dname>)

-->

 (write (crlf) |Retrieving disk smaller than |

 <dname>)

 (<s> ^change-value <cv>)

 (<cv> ^id <s> ^att current-retrieval

 ^value <nsd>)}

sp {find-next-tower*apply*change-state

 (state <s> ^operator <o> ^current-goal <g>

 ^next-smallest-disk <nsd>)

 (<o> ^name find-next-tower

 ^goal <g> ^disk <disk>)

 (<nsd> ^disk <disk>)

 (<s> ^current-retrieval <nsd>)

 -(<g> ^state next)

-->

 (write (crlf) |Moving to state "next"|)

 (<s> ^change-value <cv>)

 (<cv> ^id <g> ^att state ^value next)}

In any rule-based system, combinations of conditional
actions must either be implemented by a combinatorial
number of rules covering the space of possible condition
combinations or by a set of rules that reason through the
combination of conditions. One important difference is that
Soar models can sometimes execute such rule combinations
in parallel where ACT-R must execute them in sequence.
Either choice has an impact on the timing of decision
making, as well as the types of errors and adaptivity that the
model might produce.
The standard Soar idiom for implementing multiple

actions can also encounter problems that impact timing,
errors, and adaptivity. The typical approach in Soar would
have a single operator object that has associated with it
multiple rules that implement the conditional logic for
various combinations of actions. However, different
sequences of action may require rule-firing sequences of
different lengths, some of which can cause the operator

object to be deselected automatically (this is in fact the case
in the above example, where there are additional rules that
match against the “change-value” pattern). This can
introduce “race conditions” where one stream of decision
making does not get a chance to complete because another
stream has deselected the operator. Consider the following,
slightly more complicated, ACT-R rule, which implements
three separate actions simultaneously.

(p clear-disk

 =goal>

 isa move-disk

 disk =disk

 peg =peg

 state peg

 =retrieval>

 isa disk-on-peg

 disk =disk

 peg =on

 - peg =peg

==>

 !output! "Subgoaling clear-disk with disk ~S on

peg ~S to peg ~S parent ~S" =disk =on =peg =goal

 +goal>

 isa clear-disk

 disk =disk

 current =on

 peg =peg

 parent =goal

 +retrieval>

 isa next-smallest-disk

 disk =disk

 =goal>

 state =retrieval)
Attempting to implement this with a single Soar operator

would almost certainly lead to race conditions that would
cause the model to break. The standard Soar idiom to
respond to such a situation is to break these simultaneous
conditional actions into individual operators, so they cannot
race with each other. But because Soar only allows one
operator at a time, this imposes sequential processing, where
the initial desire was to implement a set of parallel actions.
Again, a combination of constraints within the architecture
directly leads to meaningful changes in the data that models
will produce.

Sequential vs. Parallel Memory Retrieval

In ACT-R, the combined bottlenecks for individual rule
firing and memory access through a retrieval buffer produce
a common idiom for accessing and processing elements
from long-term declarative memory. Before any memory
object can be accessed, it must first be fetched into the
retrieval buffer. Thus, the idiom is to include one rule (or
more) to initiate the retrieval, and one rule (or more) to
“harvest” the retrieved item, processing it in the desired
way. Below are two example rules, again from a Towers-
of-Hanoi model. These rules process a “clear-disk” goal by
creating a subgoal to move the “next smaller tower” off of
the current disk. In order to accomplish this, the ACT-R
model must first find a peg to move the subgoal tower to.
This is accomplished by searching for a spare peg and
fetching it into the retrieval buffer, where it then becomes
available to provide information for the new subgoal.
(p find-spare-peg

 =goal>

 isa clear-disk

 disk =disk

 current =on

 peg =peg

 state nil

 =retrieval>

 isa next-smallest-disk disk =disk next =next

==>

 !output! "Next smaller disk to ~S is ~S and

retrieving peg other than ~s and ~S" =disk =next

=on =peg

 =goal>

 disk =next

 state other

 +retrieval>

 isa spare-peg

 current =on

 destination =peg)

(p clear-tower

 =goal>

 isa clear-disk

 disk =disk

 current =on

 peg =peg

 state other

 parent =parent

 =retrieval>

 isa spare-peg

 current =on

 destination =peg

 other =other

==>

 !output! "Subgoaling move-tower with disk ~S

peg ~S parent ~S" =disk =peg =parent

 +goal>

 isa move-tower

 disk =disk

 peg =other

 parent =parent)

As in our first example above, a Soar model could be

built similarly by mimicking the retrieval buffer within

Soar’s working memory. However, the more typical idiom

in Soar would take advantage of Soar’s unfettered access to

all elements in declarative memory. In such a Soar model, a

single rule can perform a complex conditional query and use

the information to create the desired subgoal, without

requiring the extra step of going through a retrieval buffer.

sp {clear-disk*propose*create-subgoal*move-tower

 (state <s> ^current-goal <g> ^disk <disk>

 ^next-smallest-disk <nsd>

 ^spare-peg <sp>)

 (<g> ^name clear-disk ^disk <disk>

 ^current <on> ^peg <peg> ^parent <parent>)

 (<nsd> ^disk <disk> ^next <next>)

 (<sp> ^current <on> ^destination <peg>

 ^other <other>)

 (<next> ^name <dname>)

 (<peg> ^name <pname>)

 (<other> ^name <oname>)

-->

 (write (crlf) |Create new subgoal move-tower

disk | <dname> | to peg | <oname> | to replace

clear-disk from peg | <pname>)

 (<s> ^operator <o>)

 (<o> ^name create-subgoal ^goal <ng>)

 (<ng> ^name move-tower ^disk <next> ^peg <other>

 ^parent <parent> ^clear-parent *yes*)}

In general, the lack of a retrieval buffer in Soar allows

Soar models to be written in a more compact way with more

opportunities for the reuse of individual operators and rules.

The primary potential downside is that many Soar models

do not take the memory-retrieval bottleneck seriously, as

ACT-R models must. It is possible to find Soar models that

have literally hundreds of accessible items in their

declarative memory at one time, although this is generally

truer for “applied” Soar systems than it is for serious

cognitive models built in Soar. There are a number of Soar-

based cognitive models that self-impose more declarative-

memory constraints than the architecture itself requires

(e.g., Wray & Chong, 2005; Young & Lewis, 1999). It is

also worth noting that Soar models with large declarative

memories are usually compensating for the fact that they do

not use Soar’s built-in learning mechanism. Models that use

learning usually use the learned rules for declarative access,

rather than relying on huge declarative memories. The

situation is similar in ACT-R, except that ACT-R’s

constraints are more forceful in the sense that it is more

difficult to “cheat” in the ways that you sometimes can

when using Soar.

There are some senses in which loosely limited

declarative memory access may be plausible, but other

senses in which it certainly is not. On the other hand, the

restriction in ACT-R to have a single retrieval buffer that

can hold only a single chunk is probably overly restrictive in

some cases. In the example above, it would seem

reasonable that a model of even a slightly experienced

Towers-of-Hanoi practitioner should just “know” what the

third peg is. However, under the current architectural

constraints, that is only possible by encoding in the

production rules all the combinatorial possibilities of origin

and destination pegs (admittedly a limited number with only

three pegs, but still too large to be considered elegant or

even plausible). It would seem plausible to have a small

number of frequently and/or recently used chunks directly

accessible from some sort of working memory, but that is

currently only possible by having the modeler pack a given

buffer with the content of those chunks, a practice that often

leads to brittle and/or implausible models. Both

assumptions lead to interesting models that are qualitatively

different, but perhaps plausible and implausible in their own

ways.

The main reason for the differing idioms in this case is

that Soar implements its “retrieval process” through rules

and rule conditions that can encode arbitrarily complex

conjunctions of declarative memory elements. Retrieval in

ACT-R is instead a sequential process that takes a set of

cues as input and returns a single set of elements to fill the

retrieval buffer. Both of these approaches to memory access

manifest themselves in modeling idioms that predict

different types of behavior. In this case, it is interesting to

note that each architecture adopts a rather extreme approach

to memory access, where a more accurate model of the

human architecture would probably be somewhere in

between the two. It seems unlikely that human memory is

limited to holding accessible a single chunk at a time (e.g.

Miller, 1956), but equally unlikely that human memory is

capable of unfettered retrieval of arbitrarily complex

conjunctions.

Partial Matching vs. Preferences for Conflict

Resolution

One of the more unique aspects of the Soar architecture

involves its mechanisms for supporting symbolic rule-based

preferences for conflict resolution. In Soar, all conflict

resolution centers around deciding which operator object to

select next, and this is generally accomplished by preference

rules that propose binary comparisons between the various

candidates (O1 is better than O2, O2 is just as good as O3,

etc.). The rule-based preference mechanism is necessary

because there is no architectural conflict resolution

mechanism (other than the architectural component that

makes a selection based on the symbolic preferences).

In ACT-R, conflict resolution centers around two types of

choices: which rule instantiation should fire next and which

chunk should be retrieved from declarative memory into the

retrieval buffer. ACT-R includes architectural mechanisms

to support both of these modes of conflict resolution. Both

mechanisms are similar, being grounded in subsymbolic

concepts (utility and activation, respectively) and including

similar restrictions such as learning constraints. Thus, the

idiom in ACT-R modeling is to create numerically oriented

“preferences” that are assumed to reflect some sort of

learning from prior experience. The Soar idiom is to encode

the preferences as (sometimes complex) sets of logical

ordering constraints (which are also assumed to be learned).

The result is that we see some significant differences

between ACT-R and Soar in conflict-resolution modeling,

depending on the type of model. For purely symbolic

models, ACT-R must include rule conditions that encode

the combinations of constraints that could be represented as

individual preference rules in a Soar model. However,

ACT-R also provides a subsymbolic partial-matching idiom

that is not directly available to Soar modelers. Similarly,

the most recent versions of Soar have introduced the ability

to specify numeric and probabilistic preferences, so there

are some new opportunities to explore non-symbolic

preference idioms in Soar, as well.

Following is a simple example of the relatively compact

representation of preferences that can be encoded into a

Soar model. In this example, the model is to select either an

“eat” operator or a “drink” operator, but it prefers to eat

before drinking.

sp {eat*propose

 (state <s> ^agent <a>)

 (<a> ^hungry yes)

-->

 (<s> ^operator <o> + =)

 (<o> ^name eat ^agent <a>)}

sp {drink*propose

 (state <s> ^agent <a>)

 (<a> ^thirsty yes)

-->

 (<s> ^operator <o> + =)

 (<o> ^name drink ^agent <a>)}

sp {prefer*eat*over*drink

 (state <s> ^operator <o1> + <o2> +)

 (<o1> ^name eat)

 (<o2> ^name drink)

-->

 (<s> ^operator <o1> > <o2>)}

Note that, if Soar did not include its preference-based

conflict-resolution mechanism, a modeler would be forced

to encode the semantics of the various preferences into the

operator proposal rules themselves. For example, in the

above code, we would have to change the drink proposal

rule to the following:

sp {drink*propose

 (state <s> ^agent <a>)

 (<a> ^thirsty yes -^hungry yes)

-->

 (<s> ^operator <o> + =)

 (<o> ^name drink ^agent <a>)}

A potential problem with this approach to conflict

resolution is that it will lead to a combinatorial explosion of

conditions for complex preferences between multiple

potential choices. In a purely symbolic ACT-R model, the

approach would be similar, but with an added constraint.

Because only one item can be in the retrieval buffer at a

time, an ACT-R model must test the different logical

conditions sequentially and either make each test depend on

the results of the previous one(s) or accumulate the results

in the goal (or some other) buffer for some final decision.

In contrast, Soar proposals can each check their

combinations of conditions with less restricted access to

declarative memory. Thus the symbolic ACT-R approach

might look as follows:

(p check-hungry

 =goal>

 isa agent

 name =name

 state nil

==>

 +retrieval>

 isa property

 agent =name

 attribute hungry

 value yes

 =goal>

 state hungry)

(p check-thirsty

 =goal>

 isa agent

 name =name

 state hungry

 =retrieval>

 isa error

==>

 +retrieval>

 isa property

 agent =name

 attribute thirsty

 value yes

 =goal>

 state thirsty)

In the above example, the first rule’s retrieval will

succeed if and only if there is a “hungry” property with a

value of “yes” in declarative memory. If that retrieval fails,

the check-thirsty rule will look for a “thirsty” property with

a value of “yes”. However, ACT-R modelers are not

restricted to doing symbolic conflict resolution. For choices

like this, ACT-R also supports similarity-based partial

matching for retrieval. It is possible to define a “similarity

relationship” between different attribute values, which will

in turn influence how the retrieval process executes. Using

ACT-R’s partial-matching mechanism, we can rëimplement

the above example as follows:
(setsimilarities (hungry thirsty -0.5))

(p choose-action

 =goal>

 isa agent

 name =name

 state nil

==>

 +retrieval>

 isa property

 agent =name

 attribute hungry

 value yes

 =goal>

 state unknown)

In this case, the attribute values “hungry” and “thirsty”

are set to be relatively dissimilar to each other. But the fact

that they are defined with any similarity measure at all

indicates that they are candidates to be substituted for each

other in any partial-matching retrieval. Thus, the choose-

action rule initiates a search for “hungry yes”, and it will

retrieve a perfectly matching chunk if one exists in

declarative memory. But if there is no perfectly matching

chunk, the retrieval process will instead look for the closest

partial match. In this case, a chunk representing “thirsty

yes” would be the next best match. Based on whichever

chunk happens to get retrieved, the program can then choose

to “eat” or “drink”, as appropriate. However, if the set of

options is so complex or heterogeneous that checking the

options cannot be reduced to a single retrieval, then an outer

loop must be explicitly maintained to access the various

options sequentially, where in Soar they could be combined

into a single complex conditional rule. The problem in

ACT-R is that if each option involves checking some

additional condition (such as perceptual or memory

information), then the utility preferences are not helpful

because they would attempt to check the same condition

over and over again. Either an explicit round robin check of

the various conditions has to be set up symbolically in the

production conditions or learning of the utilities can be used

to iterate through the options by having the failure of each

option temporarily depress the utility of the production

selecting that option (Lebiere et al., in press).

Exhaustive Processing and Search

The final pattern we investigate involves performing

exhaustive iterative actions on a set of similar object or

chunk types. For example, imagine that declarative memory

contains a number of message objects, each with a text

attribute. We would like to build a model that iterates

through all of the messages and prints out the text value of

each one. In a Soar program this can be done relatively

simply because an individual operator application rule can

match against multiple objects at a time, and each matching

instantiation will execute simultaneously. For example, the

following Soar rule simultaneously finds all “unhandled”

message objects in declarative memory, prints their

messages, and marks the message objects as “handled”.

sp {handle-messages*apply

 (state <s> ^operator <o> ^message <m>)

 (<o> ^name handle-messages)

 (<m> ^text <t> ^message-handled false)

-->

 (write (crlf) | Message is: | <t>)

 (<m> ^message-handled false - true +)}

In contrast, ACT-R is restricted to matching one object at

a time through the retrieval buffer. In older versions of

ACT-R, this would be accomplished by iterating over a

sequence of retrievals and harvests, tagging each chunk as it

is processed. This approach also requires an additional rule

that detects when the retrieval process has failed to find any

further matching candidates for processing.

(p find-message-to-handle

 =goal>

 isa handle-message

 state nil

==>

 =goal>

 state harvest

 +retrieval>

 isa message

 handled false)

(p handle-message

 =goal>

 isa handle-message

 state harvest

 =retrieval>

 isa message

 text =text

 handled false

==>

 !output! "~S" =text

 =goal>

 state nil

 =retrieval>

 handled true)

(p finish-handle-message

 =goal>

 isa handle-message

 state harvest

 =retrieval>

 isa ERROR

 condition Failure

==>

 !output! "Done handling messages"

 =goal>

 state finished)

However, the most recent version of ACT-R does not

allow non-monotonic changes (such as tagging) to chunks in

the retrieval buffer, so new idioms are developing that rely

on the subsymbolic processing of the retrieval mechanism.

These new idioms encounter additional confounding factors.

A major problem is that the dynamics of the activation

calculus, and in particular the learning of the base level to

reflect frequency and recency of access, conspire against

that iterative process. Recently accessed chunks become

more active while chunks that have not been accessed decay

and become less active, leading to the opposite dynamics of

the iteration desired, namely a winner-take-all tendency to

retrieve the same candidate(s) again and again. One typical

idiom to get around this problem is to alter subsymbolic

processing parameters such as noise, in order to “break out”

of bad retrieval sequences. However, this is often only

partially successful in moving the iteration along.

Another example of iteration comes again from the

Towers of Hanoi. In this problem, it is useful to compute

which disk is currently at the top of a particular peg. In a

Soar model, the encoded logic is along the lines of “find a

disk on the peg for which all other disks on the peg have a

lower position”. Although this gets a bit messy, the logic

can be encoded in the conditions of a single Soar rule. In

contrast, an ACT-R model must implement this logic using

a sequential loop or by clever configuration of the partial-

matching mechanism. Although the sequential iteration can

be implemented in a relatively straightforward fashion, it

again runs into the stumbling block that ACT-R prefers to

retrieve the same disk repeatedly, instead of iterating

through all of the disks on the peg.

Note that it is also possible to implement sequential

iteration using operators in Soar. Soar does not include the

restriction against altering declarative memory items, so the

typical Soar idiom in such situations is to tag each object as

it is processed in sequence. However, depending on the

situation, the alternative idiom in Soar is to use a single rule

to process everything at once. It is certainly a valid

question, however, whether Soar ought to make it so easy to

do this type of computation. It could be argued persuasively

that humans in general cannot perform this type of

exhaustive, instantaneous, massively parallel processing,

and so it is a mistake for Soar to allow and even encourage

this type of solution. On the other hand, there are certainly

some types of massively parallel processing occurring in the

human architecture. So once again, we are faced with two

architectures that embody extreme constraints, where the

truth is probably a combination or compromise.

It should also be noted that there are particular problems

of this type that also require a sequential solution approach

in Soar. For example, although a Soar program can easily

use one rule to operate on a whole set of objects

simultaneously, it currently has no way to count the number

of objects in that set. For the task of counting the number of

elements in a set, both ACT-R and Soar demand

sequentially implemented solutions.

Conclusion

We have examined four classes of modeling idioms that

arise relatively directly from the combination of assumed

constraints on cognitive processing imposed by the ACT-R

and Soar cognitive architectures. We hope that these

examples provide a more detailed feeling to the modeling

community about what some of the differences and

similarities are between the architectures, particularly when

it gets to the nitty-gritty of building detailed models. From

a cognitive modeling perspective, this is not just an exercise

in examining computationally equivalent modeling

approaches. Each of the idioms implies measurable

differences in the type of data the models will produce. We

have also observed that the constraints and bottlenecks

assumed by each architecture tend be rather extreme and

often opposed to each other. We join others in

recommending future work that includes finding more

intermediate constraints on the cognitive architecture, which

should translate to some variation in the common modeling

idioms, and in turn to cognitive models that produce better

matches to human data.

References

Anderson, J., & Lebiere, C. (1998). The Atomic

Components of Thought. Mahwah, NJ: Lawrence

Erlbaum.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y . (2004). An integrated theory of
the mind. Psychological Review 111, (4). 1036-1060.

Jones, R. M., Crossman, J. A., Lebiere, C., & Best, B. J.
(2006). An abstract language for cognitive modeling.
Proceedings of the Seventh International Conference on
Cognitive Modeling. Trieste, Italy.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial
Intelligence 33(1): 1-64.

Lebiere, C., Archer, R., Best, B., & Schunk, D. (in press).
Modeling pilot performance with an integrated task
network and cognitive architecture approach. In Foyle,
D. & Hooey, B. (Eds.) Human Performance Modeling in
Aviation. Mahwah, NJ: Lawrence Erlbaum.

Miller, G. A. (1956). The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for Processing
Information. Psychological Review, 63, 81-97.

Wray, R., & Chong, R., (2005). Comparing cognitive
models and human behavior representations:
Computational tools for expressing human behavior.
Proceedings of the Infotech@Aerospace 2005
Conference, Arlington, VA. American Institute of
Aeronautics and Astronautics.

Young, R. M., & Lewis, R. L. (1999). The Soar cognitive
architecture and human working memory (1999). In A.
Miyake & P. Shah (Eds.), Models of Working Memory:
Mechanisms of Active Maintenance and Executive
Control, 224-256. Cambridge University Press.

Acknowledgments

This work was supported in part by contract N00014-05-C-

0245 from the Office of Naval Research. Many thanks to

Bob Wray for his helpful comments on an earlier draft.

